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ABSTRACT

Low power consumption or high execution speed is achieved by
making an application specific design. However, today’s sys-
tems also require flexibility in order to allow running similar or
updated applications (e.g. due to changing standards). Finding
a good trade-off between reconfigurability and performance is
a challenge.

This paper presents a tool that analyzes a given set of appli-
cations (as netlists) and generates a heterogeneous coarse-grain
reconfigurable architecture that matches their requirements.
Its main task is to optimize the interconnect by hierarchically
grouping the functional units. Additional resources can be
added to enable future applications. The tool generates the
HDL source for a module with the instances of all blocks
and the reconfigurable interconnect. The feasibility of the
methodology is demonstrated by the design of a reconfigurable
architecture for digital filters and simple logic networks.

Index Terms— Programmable Logic Devices, Reconfig-
urable Architectures, Reconfigurable Logic, Design Automa-
tion, Integrated Circuit Interconnections

1. INTRODUCTION

In current system design a shift to employ reconfigurable logic
tries to utilize their benefits for various applications. In typical
wireless sensor network (WSN) nodes the CPU as main con-
troller consumes power even for very simple tasks. By adding a
dedicated reconfigurable hardware module to offload the CPU
for such simple tasks like sensor measurements or network
MAC layer handling, a large reduction in the power consump-
tion can be achieved [1]. These reconfigurable modules also
enable the use of the SoC in multiple different environments
and thus sharing the non-recurring engineering (NRE) costs.

Accelerators for computer vision systems should support
various algorithms. Currently this is achieved by implementing
all algorithms in parallel and switching between them. Since
the algorithms also have common operations, a reconfigurable
system can reduce the required hardware resources. In multi-
standard and multi-function communication systems the same
approach leads to a reduction of hardware resources [2].

This work has been supported (in part) by the Austrian COMET K-
project ECV under contract no. 815105.

The use of fine grained reconfigurable logic like FPGAs
poses a large overhead in terms of area and power. On the other
hand, coarse-grained reconfigurable systems achieve an ASIC-
like performance [3, 4]. For the above mentioned applications,
domain-specific reconfigurable circuits with heterogeneous, tai-
lored blocks and a non-regular interconnection can provide fur-
ther reduction in power and area [5].

In this work, a tool for the design of heterogeneous coarse-
grain reconfigurable circuits is presented. From a set of differ-
ent actual applications, the set of required (possibly reconfig-
urable) hardware blocks and the interconnect between them is
deduced. The grouping of the blocks is optimized, to minimize
the hardware resources of the interconnect.

First we review the design and usage of custom reconfig-
urable hardware, followed by interconnect requirements and
evaluation of topologies. The main part is an optimization al-
gorithm for the automatic synthesis of the interconnect. A short
section will show the integration in the ASIC design flow, which
is followed by an evaluation of the algorithm results. The paper
ends with conclusions and future work.

2. RECONFIGURABLE HARDWARE STRUCTURE

The generation of reconfigurable circuits is split in two phases.
In the so called “pre-silicon phase” the reconfigurable hard-
ware structures are designed for the application class. Secondly,
in the “post-silicon phase” the reconfigurable silicon circuit is
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Fig. 1. Example interconnect with two different interconnect
types (bit-wide and word-wide). The word-wide interconnect
is implemented as two parallel trees.



used to implement the actual application [6].
In this work an approach is presented, which provides the

(semi-) automated generation of the pre-silicon circuit and can
generate the configuration data for an actual application in the
post-silicon phase.

2.1. Pre-Silicon Phase

In the pre-silicon phase, the reconfigurable circuit is designed.
As first step, its specification is derived from the set of (usu-
ally similar) actual applications, which will be implemented in
the reconfigurable logic. During this design space exploration,
the “needs of [the] applications [...] drive the construction of
the fabric” [3, p. 1]. This approach requires the a-priori knowl-
edge of all future applications and it is generally not possible to
implement a different application with the resulting fabric. To
enable yet unknown applications, we propose to include addi-
tional hardware and interconnect resources to the fabric.

The specification includes information on the employed
blocks (also called functional units) (e.g., adders, FSMs, ...),
which can be reconfigurable themselves (e.g. an adder be
reconfigured as a subtracter, reconfigurable FSM [7]). Addi-
tionally it includes the number of instances of each block as
well as details on the connections among them.

2.2. Post-Silicon Phase

After production in the post-silicon phase the actual applica-
tion has to be implemented by configuring the silicon structure
designed in the pre-silicon phase. So, on one hand, the post-
silicon phase is limited by the results of the pre-silicon phase.
On the other hand, the pre-silicon phase requires information on
the actual implementations later used in the post-silicon phase
to provide the required resources.

2.3. Hardware Structure

For the presented algorithm, a few terms have to be defined.
The circuit is built of multiple cells, which are instances of var-
ious cell types (previously called blocks, e.g. adder, FSM, look-
up tables). Each has a number of input and output ports.

Analogous to the separation of the control logic and the
data-path in the FSM+D concept, each port of the cell types im-
plements a connection type, e.g. bit-wide, word-wide or other
categories. The connection types are defined based on compati-
ble signaling (e.g. identical bit width) as well as semantics (e.g.
clock enable vs. other control signal).

All cells are connected using a reconfigurable interconnect.
For every connection type a separate interconnect is imple-
mented (see Fig. 1) which provides connections between all
ports of its connection type.

In the post-silicon phase, an actual application is imple-
mented by connecting the cells as given by the netlist. This
specifies nodes of certain cell types, which are mapped to the
cells of the reconfigurable circuit. The ports of these nodes are
connected with nets, which are routed via the interconnect of

the according connection type by setting the proper configura-
tion.

3. INTERCONNECT

Most applications of coarse-grain reconfigurable logic are de-
signed for computational tasks [4]. These use an array of ho-
mogeneous functional units connected with a highly regular in-
terconnect (e.g. mesh structure), similar to FPGAs. In contrast,
the presented approach assumes heterogeneous functional units
(cell types), which also require a non-regular interconnect.

3.1. Requirements

For the connection of the cells an interconnect topology with
the following properties is required.

1. Allow random connections of the cells up to a certain
degree.

2. Allow optimization of the interconnect for recurring pat-
tern and similarities in the example netlists.

3. Can be characterized using a relatively simple and regu-
lar data structure. The existence of such a representation
allows for easy manipulation and investigation of the in-
terconnect topology.

4. Prohibits over-optimization to the example netlists that
would prevent the interconnect to work with netlists that
have similarities with, but are not identical to any exam-
ple netlist.

5. Allow for easy oversizing of the interconnect resources
to broaden the spectrum of implementable netlists.

6. Easy to implement with currently available logic synthe-
sis tools.

3.2. Topology

Different interconnect topologies are evaluated in this sec-
tion. The most powerful topology provides connections from
every output to all inputs. The disadvantages are a large cir-
cuit overhead. On the other hand, a minimalistic interconnect
with a small number of multiplexers to switch between alter-
native datapaths (compare [2]) does not allow to implement
yet-unknown applications in the reconfigurable circuit.

The topology proposed by [3, 8] uses alternating layers of
functional units (FUs) and interconnecting MUXes. Although
these MUXes only partially connect the FUs above and below
the interconnect, the topology assumes a homogeneous pool of
FUs.

Mesh structures are an alternative to the layered topology,
but also assume homogeneous FUs which can be configured to
perform each of its basic functionalities. The interconnect itself
requires a high number of switches which pose a high overhead
in terms of silicon area and power. To reduce the large amount
of hardware resources for the interconnect, FUs can be config-
ured to route-through signals. On the other hand, this reduces
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Fig. 2. Example interconnect with seven switches in three levels connecting nine cells of varying cell types

the number of FUs available for processing tasks. To free up
FUs in domain specific reconfigurable arrays, [9] augment the
mesh network by additional links using inexact graph matching
and the A∗ search algorithm.

A mesh of heterogeneous FUs (adder, multiplier, con-
stant, ...) for a domain-specific reconfigurable array is designed
using a genetic algorithm [10]. It optimizes the placement of
the FUs to reduce the wire length of the interconnect. The
algorithm provides the physical structure (i.e., placement) of
the reconfigurable circuit and extends mesh structures to het-
erogeneous FUs.

Another topology for heterogeneous FUs are multistage in-
terconnection networks (MINs) as Clos, Benes and Omega net-
works [11]. This topology poses two disadvantages: Firstly, the
signal cannot be routed from an output to multiple inputs (mul-
ticast). This is tackled by the introduction of a copy-benes stage
[12]. Secondly, the network is blocking, that means that certain
combinations of signal routing cannot be implemented concur-
rently. By using two parallel MINs, this problem is reduced
[12].

In SoCs, a bus topology is used to connect the CPU with the
memory and all peripherals. For reconfigurable logic circuits
with all cells working in parallel, this leads to high traffic and
thus congestions [4]. The utilization of every cell is reduced and
the total processing time protracted, which is not acceptable in
the domain of low-power circuits.

A tree based interconnect topology [13] allows to group the
cells to provide short paths through lower levels of the tree for
connections, which are used frequently by the different appli-
cations. On the other hand, connections to other nodes are still
possible using higher hierarchical levels of the tree. This pro-
vides a large optimization potential to reduce circuit overhead
but still results in a rich set of routing resources.

3.3. Tree Topology

For the implementation of the reconfigurable modules, the tree
topology was chosen to connect the individual cells due to its
advantages and that it fulfils the above defined requirements.
The interconnect is a tree (see Fig. 2) with the cells as leaf nodes
and reconfigurable switches as inner nodes as well as the edges
as connections (electrical nets).

The switches are unidirectional circuits which can be con-
figured to connect any input port to any output port (see the
detail in Fig. 2). The degree of a switch is the number of its
children, (e.g., Switch 3 has a degree of two, Switch 6 has a de-
gree of three). Each cell and each switch have a parent switch,
except the top-most root switch. The height of the tree is the
number of levels (e.g., Fig. 2 has a height of three).

The routing length of a net is the number of switches it
passes from its source cell to its destination cell. The total rout-
ing length is the sum for all nets of a given netlist.

Each non-root switch in the tree has a number of connec-
tions to and from its parent switch. Only the number of these
connections limits the capability of the interconnect to imple-
ment different netlists. Each switch can drive all outputs from
any input, with one exception: A signal driven by one switch to
another switch cannot be routed back to its originating switch.

To improve the connectivity, for each connection type mul-
tiple parallel trees with identical topology can be implemented
(as also implemented by [12], compare Fig. 3 and the two word-
wide interconnect trees on the right side in Fig. 1). Each cell is
assigned to a (generally different) leaf node in each tree. There-
fore each net can be routed in any tree. As each cell might be
assigned to a different leaf node in each tree, the routing length
of a net can be small in one tree but high in the other trees.

The tree interconnect provides numerous advantages in
comparison with the alternatives in respect to the requirements
established in Sec. 3.1.

Ad 1) The netlists, which can be implemented by a given
interconnect tree is only limited by the number of connections
between the switches and their parent switches and the tree lay-
out (number of levels and degree of switches). An interconnect
with only one big root switch is equivalent to a full-MUX inter-
connect that can implement any netlist. This might be useful for
connection types with only a small number of input or output
ports.

Ad 2) The interconnect can be optimized towards the sim-
ilarities in the example netlists by choosing cell to tree leaf map-
pings in a way that minimizes the interconnect utilization of the
example netlists.

Ad 3) The whole interconnect can be described using only
two simple data sets: Firstly the mapping of each cell to one
leaf in each tree and secondly for each switch the number of
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Fig. 3. Exemplary interconnect for the digital filters shown in Fig. 5 using two parallel interconnect trees (top and bottom). The
routed signal paths show the post-silicon configuration for the biquad-df1 filter. In the pre-silicon phase, the interconnect was
optimized with the other three topologies. Note that the cells in the bottom half are the same as the cells in the top half, but in a
different order, because they are mapped to different leaves in the second interconnect tree.

connections to and from its parent switch. The first data set can
be charaterized as a per-tree permutation and can be manipu-
lated and optimized easily by exchanging the assignments of
two cells in one tree. The second data set is a list of integers
where greater value implies more flexibility in the post-silicon
phase, but also more chip resources.

Ad 4) As whole cells (instead of individual ports) are
mapped to tree leaves, the optimization potential towards the
individual datapaths is limited. There will always be nets that
cannot be routed only by using the lowest layer of the intercon-
nect. Thus smart grouping of cells can be used to optimize the
interconnect to the requirements of the example netlists up to a
certain degree. On the other hand, the interconnect will not be
limited to the example netlists.

Ad 5) Oversizing is done by increasing the number of
connections between switches. Netlists which are similar but
not part of the set of example netlists might have nets which
result in a high routing length. With oversizing, extra routing
resources help to improve these cases.

Ad 6) The interconnect topology provides only unidirec-
tional links. This allows for an implementation using MUXes
built from standard cells, as generated by ASIC synthesis tools.
For the interconnect in most up-to-date FPGAs, unidirectional
links are also reconsidered [14].

An additional problem arises from potential combinational
loops within the interconnect circuitry. This is eliminated by
forbidding routing back a signal back to its originating switch.
It is, however, still possible to create loops through combina-
tional cells connected to the interconnect. This problem must
be taken care of by breaking the loops when applying the syn-
thesis constraints, e.g. using false paths and virtual clocks [15].

4. INTERCONNECT SYNTHESIS

A tool called InterSynth was implemented, which automatically
generates the interconnect for the reconfigurable module. It
uses a set of example netlists (each representing an actual ap-
plication, compare Sec. 2.1) with instances of cell types and
connections among them. These are used to optimize the in-
terconnect to provide cells and connectivity, able to implement
any of these netlists. The output is a synthesizable Verilog file
which instantiates the cells and describes the reconfigurable in-
terconnect.

In the pre-silicon phase, the algorithm first builds the inter-
connect topology with the given number of parallel trees, height
of the trees and order of each level. The total number of leaves
is given by the number of cells required by the example netlists.
Then the cells are assigned to leaves in the interconnect trees
(cell-to-leaf-mapping) and the required number of connections
for each switch to and from its parent switch are determined so
that the connections of all example netlists can be routed. In
that course the algorithm also implements all example netlists.
This means that for each netlist, each node is mapped to a cell
(node-to-cell-mapping) and each net is routed via one of the
interconnect trees.

4.1. Optimization Algorithm

During the interconnect optimization, the cell-to-leaf-mappings
are permuted, so that a smaller number of connections to and
from the parent switches (and therefore hardware resources)
are required to still implement all example netlists. This is
preformed using an iterative algorithm, of which a single it-
eration is shown in Fig. 4. It operates on the state S , which
contains all node-to-cell-mappings for all netlists and all cell-
to-leaf-mappings for all interconnect trees.

The optimization is based on the Kernighan-Lin algorithm



S ← initial state

function KERNLINOPTIMIZE(S, P , T )
j ← 1
S0 ← S
while P contains compatible pairs do
Sj ← Sj−1

(p1, p2)← best candidate pair from P
Swap T mapping of p1 and p2 in Sj
Remove p1 and p2 from P
j ← j + 1

end while
S ← best candidate from S0 . . .Sj−1

end function

if mode_align_netlists then
repeat
Sold ← S
for all N = example netlist do

P ← set of all nodes in N
KERNLINOPTIMIZE(S, P , node_to_cell)

end for
until Sold = S

end if

for i = 1→ max. interconnect levels do
if mode_swap_cell_mappings then

for all I = interconnects with min. i levels do
P ← set of all leaves in I
KERNLINOPTIMIZE(S, P , cell_to_leaf)

end for
end if
if mode_swap_node_mappings then

for all N = example netlist do
P ← set of all nodes in N
KERNLINOPTIMIZE(S, P , node_to_cell)

end for
end if

end for

Fig. 4. Intersynth Algroithm

[16], which is a heuristic procedure for solving partitioning
problems by permuting the domain mappings of entities. In
InterSynth it is used (in a slightly modified manner) to per-
mute the node-to-cell- and cell-to-leaf-mappings in the state
S . The function KERNLINOPTIMIZE in Fig. 4 implements the
Kernighan-Lin algorithm.

For the first iteration of the algorithm a start state S with
random mappings is used. For all further iterations the result
of the previous iteration is used as starting point. Experiments
have shown that usually six iterations are enough to find a rea-
sonable good solution.

The algorithm is controlled using flags that enable or dis-
able certain parts of the algorithm. Note that the KERNLINOP-
TIMIZE function is using different optimization goals in the dif-
ferent parts of the algorithm. So the term best candidate pair in

KERNLINOPTIMIZE is using a different definition of best de-
pending on the calling block. The flag mode_align_netlists
enables a block that “aligns” the netlists so similar subcircuits
are mapped to the same set of cells. In this block the optimiza-
tion goal for KERNLINOPTIMIZE is to minimize the number of
unique pairs of connected cell ports over all netlists. The flag
mode_swap_cell_mappings enables a block that permutes the
cell-to-leaf-mappings for the individual interconnect trees and
the flag mode_swap_node_mappings permutes the node-to-cell-
mappings. In both blocks the optimization goal is to minimize
the sum of the total routing lengths for all netlists in the top i
levels of the interconnect trees. Therefore the first iteration of
the i-loop only tries to reduce the utilization of the root switch
and further iterations of the i-loop refine this first solution with
respect to the other switching levels in a top-down manner.

For the pre-silicon procedure the algorithm is used with the
flag mode_align_netlists enabled in the first iteration. Thus
the actual algorithm is using aligned netlists as starting point.
The flag mode_swap_cell_mappings is set for all iterations and
mode_swap_node_mappings is only set for the second half of
iterations. Thus the algorithm first tries to find a good solu-
tion without modifying the aligned netlists and after that uses
this solution as starting point for an optimization run with all
degrees of freedom. After this the number of required connec-
tions for each switch to and from its parent switch is calculated
by using the maximum number of these connections used for
each switch in the routing results generated by the algorithm.
InterSynth also provides configuration options for the oversiz-
ing.

In post-silicon runs the flag mode_align_netlists is never
activated as there is only one netlist in post-silicon runs. The
flag mode_swap_cell_mappings is also never set during the
post-silicon procedure as the cell-to-leaf-mappings cannot be
changed once the chip has been manufactured. The flag mode_-
swap_node_mappings is set in all iterations of the post-silicon
procedure. As information about the available routing resources
is available during the post-silicon procedure this information
is used by the post-silicon routing algorithm. Thus the post-
silicon routing algorithm does not optimize for shortest path
but for least congestion.

4.2. Implementation Details

The actual implementation of InterSynth is using perfor-
mance optimizations. For example, instead of copying S to
S0, . . . ,Sj−1, a journal of the swaps is maintained that can be
rolled back to the best solution. When the number of utilized
nodes of a certain type varies between the netlists, additional
“dummy nodes” are added by InterSynth to level the number of
used nodes across all netlists. This is necessary as InterSynth
can only permute the existing cell-to-leaf-mappings. So there
must be mappings for all leafs in all trees in the initial state in
order to make all possible mappings accessible to the optimiza-
tion algorithm. The cell type descriptions used by InterSynth
provide a flag to mark a cell input as possible feedback input.
An input which does not have this flag set cannot be connected



directly to an output from the same cell. For most cell types
such connections would never be part of a valid netlist. The
Verilog HDL code generated by InterSynth can be used as-is
in the final ASIC design as InterSynth can be configured to
not only include the cell instantiations and interconnect logic
but also additional support code in the HDL output, such as
connections of cell ports to ports of the generated module (for
input and output purposes or distributing global signals such as
clock and reset). It is also possible to embed configuration data
for reconfigurable cells (ALUs, etc.) within the InterSynth con-
fig bitstream. Inputs and outputs to the whole reconfigurable
modules are handled as special cell types and therefore are not
explicitly drawn in Fig. 1 and 2. The automatically generated
interconnect shown in Fig. 3 only has one input and one output
labeled IN[0] and OUT[0].

5. DESIGN FLOW INTEGRATION

The integration of InterSynth in the design flow starts with the
specification of the application class of a reconfigurable module
and multiple example applications (pre-silicon phase). From
these applications, the required cell types are derived and de-
fined using appropriate connection types. These are used in the
netlists created for all example applications.

In the manual design flow described in [5], these cell types
are instantiated in a hierarchical and structured design. Three
connection types (bit, byte and word) were used to connect the
peripherals (ADC, serial bus masters, ...) with the control logic
(using a TR-FSM [7]), the byte memory and the arithmetic unit.
The interconnect is also implemented hierarchically using large
multiplexers and switch boxes.

For the automated design flow, the whole reconfigurable
module is implemented as a pool of cells. The interconnect
is constructed and optimized by InterSynth to fulfil the require-
ments of the examples application. The user provides the defi-
nition of the connection types and the interfaces of all cell types.
The example netlists instantiate these cells and specify the nets
connecting them. Additionally, the designer can provide vari-
ous tuning parameters, such as the number of parallel trees and
oversizing rules. The output of InterSynth is the Verilog HDL
source code, which instantiates the optimized set of cells and
describes the reconfigurable interconnect. This file can be used
directly for the ASIC synthesis. It also creates a description of
the created circuit to be used in the post-silicon phase. Addi-
tionally, debug output in various formats like the TikZ-image in
Fig. 3 can be generated.

In the post-silicon phase, the circuit description created by
the pre-silicon phase is used together with the netlist of the ac-
tual application. InterSynth creates the configuration bitstream
for the reconfigurable module to implement this application.
Again, optional debug output is available.

6. EVALUATION

Two different application classes were used to evaluate Inter-
Synth: digital filters (see Sec. 6.1) and logic functions (see
Sec. 6.2). For both an identical interconnect configuration was
used, which has two parallel trees of height three (although with
different connection types). The switches in the bottom two lay-
ers have a degree of four and the top level (root) switch connects
all switches of the second layer. In order to create more flexible
interconnects, an oversizing rule for one additional connection
to each switch to and from its parent switch was used.

6.1. Filter Networks

Two instances of the four different digital filter topologies as
shown in Fig. 5 were concatenated in all 16 possible combi-
nations to build netlists of higher-order filters. The cell types
employed are (word-wide) adders, multipliers and flip-flops.

Test 1) From the pool of 16 netlists a random sample of n
was selected and used for the pre-silicon phase to optimize the
interconnect. Then the post-silicon phase was attempted with
each of the 16 netlists. This test was performed 1000 times
each for n ∈ {1, . . . , 6}. The number of attempts, in which the
netlist could not be routed within the interconnect generated by
the pre-silicon phase are shown in the center part (green back-
ground) of Tab. 1 for each n (columns) and each post-silicon
netlist (rows). It shows, that increasing the number of example
netlists n in the pre-silicon phase results in less failed attempts
in the post-silicon phase. The average resource usage of the
generated interconnect is expressed with two figures: the num-
ber of bits of the configuration data and the number of 2-to-1
MUXes (MUX2) required to build the interconnect. Both num-
bers are normalized to the total number of cell ports. The bot-
tom part (yellow background) of Tab. 1 gives their mean and the
standard deviation for n ∈ {1, . . . , 6}. For the case of n = 1
pre-silicon netlist, the average number of MUX2 is shown in
the right part of the table separated for every pre-silicon netlist
type (blue background).

fir4-df1 fir4-df2

biquad-df1 biquad-df2

Fig. 5. Filter topologies used as test netlists. Circles repre-
sent adders, squares represent delays and triangles represent
configurable constant factor multipliers.



Table 1. Filter Network Post-Silicon Errors vs. Number of
Pre-Silicon Netlists

Number of Pre-Silicon Netlists 1 Pre-Si. Netl.
Topology 1 2 3 4 5 6 mux2 dev

biquad-df1.biquad-df1 138 5 1 0 0 0 6.6 0.26
biquad-df1.biquad-df2 40 2 0 0 0 0 6.6 0.30
biquad-df1.fir4-df1 130 6 0 0 0 0 6.7 0.32
biquad-df1.fir4-df2 27 1 0 0 0 0 6.6 0.27

biquad-df2.biquad-df1 34 0 0 0 0 0 6.5 0.30
biquad-df2.biquad-df2 22 2 0 0 0 0 6.6 0.29
biquad-df2.fir4-df1 46 1 0 0 0 0 6.6 0.31
biquad-df2.fir4-df2 40 2 0 0 0 0 6.6 0.25

fir4-df1.biquad-df1 144 3 1 0 0 0 6.6 0.33
fir4-df1.biquad-df2 38 2 0 0 0 0 6.6 0.28
fir4-df1.fir4-df1 160 5 0 0 0 0 6.7 0.25
fir4-df1.fir4-df2 60 3 0 0 0 0 6.7 0.26

fir4-df2.biquad-df1 69 3 0 0 0 0 6.5 0.28
fir4-df2.biquad-df2 36 2 0 0 0 0 6.7 0.28
fir4-df2.fir4-df1 71 0 0 0 0 0 6.7 0.28
fir4-df2.fir4-df2 361 56 11 5 3 0 6.7 0.25

avg. bits / port 4.7 5.3 5.8 6.3 6.7 6.9
avg. mux2 / port 6.6 8.2 9.6 10.9 12.0 12.8

dev. bits / port 0.13 0.27 0.30 0.30 0.28 0.27
dev. mux2 / port 0.29 0.72 0.82 0.79 0.76 0.79

Number of Pre-Silicon Netlists 1 Pre-Si. Netl.
Topology 1 2 3 4 5 6 mux2 dev

biquad-df1.biquad-df1 138 5 1 0 0 0 6.6 0.26
biquad-df1.biquad-df2 40 2 0 0 0 0 6.6 0.30
biquad-df1.fir4-df1 130 6 0 0 0 0 6.7 0.32
biquad-df1.fir4-df2 27 1 0 0 0 0 6.6 0.27

biquad-df2.biquad-df1 34 0 0 0 0 0 6.5 0.30
biquad-df2.biquad-df2 22 2 0 0 0 0 6.6 0.29
biquad-df2.fir4-df1 46 1 0 0 0 0 6.6 0.31
biquad-df2.fir4-df2 40 2 0 0 0 0 6.6 0.25

fir4-df1.biquad-df1 144 3 1 0 0 0 6.6 0.33
fir4-df1.biquad-df2 38 2 0 0 0 0 6.6 0.28
fir4-df1.fir4-df1 160 5 0 0 0 0 6.7 0.25
fir4-df1.fir4-df2 60 3 0 0 0 0 6.7 0.26

fir4-df2.biquad-df1 69 3 0 0 0 0 6.5 0.28
fir4-df2.biquad-df2 36 2 0 0 0 0 6.7 0.28
fir4-df2.fir4-df1 71 0 0 0 0 0 6.7 0.28
fir4-df2.fir4-df2 361 56 11 5 3 0 6.7 0.25

avg. bits / port 4.7 5.3 5.8 6.3 6.7 6.9
avg. mux2 / port 6.6 8.2 9.6 10.9 12.0 12.8

dev. bits / port 0.13 0.27 0.30 0.30 0.28 0.27
dev. mux2 / port 0.29 0.72 0.82 0.79 0.76 0.79

The test also shows that the topology fir4-df2.fir4-df2
can not be implemented with a small fraction of the gener-
ated interconnects while the other topologies can be imple-
mented in all tests with n ≥ 4 example netlists. This can be
explained by the differences in the fir4-df2 topology com-
pared to the other three topologies in Fig. 5: All multipliers in
fir4-df2 are driven directly from the input (which therefore
has a fanout of five) and all delay outputs are connected to
adder inputs while in the other topologies delay outputs are
connected to delay or multiplier inputs. It is worth mention-
ing that fir4-df2.fir4-df2 does not require more routing
resources than the other topologies (see right part of Tab. 1). It
only requires a different interconnect because it is composed
of different patterns. Thus an interconnect that can implement
fir4-df2.fir4-df2 as well as the other 15 topologies needs
more resources than one that can only implement the 15 others.

Test 2) The resource usage of the pre-silicon results where
compared to the resource usage of an interconnect with a
random, i.e, unoptimized cell-to-leaf-mappings (mode_swap_-
cell_mappings disabled in all iterations of the algorithm). The
difference in the resources needed for these two cases is an
indicator of the optimization potential utilized by InterSynth to
optimize the interconnect for the application domain described
by the example netlists. When n = 4 pre-silicon netlists are
used and no additional routing resources are added, an average
number of 3.0 (stddev 1.1) word-wide MUX2 per cell port are
required to implement the filter example. When the InterSynth
cell to leaf mapping is replaced with a random mapping and
InterSynth is only used for the node-to-cell-mappings, this
number increases to 7.2 (stddev 0.6). This shows that Inter-
Synth can drastically optimize interconnects for scenarios like
this one with a relatively large number of cell types compared
to the number of cells.

Test 3) The number of parallel interconnect trees was var-

Table 2. Number of Trees and Degree of Switches vs. Inter-
connect Resource Usage and Post-Silicon Errors
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ied from one to five and the degree of the switches was var-
ied from two (binary tree) to six. For each of these intercon-
nect configurations, two random pre-silicon netlists where used
for optimization. The average resource utilization (number of
MUX2) for each configuration is given in the top part (green
background) of Tab. 2.

Each optimized interconnect was used for 1000 post-silicon
netlists. The number of errors (i.e., the post-silicon netlist could
not be routed within the interconnect) is shown in the bottom
part (yellow background) of Tab. 2. For a single interconnect
tree, even with a high degree of the switches a large number of
post-silicon errors are present. Two parallel trees and a degree
of four and above result in an acceptable number of post-silicon
errors. Therefore two parallel trees with switches of degree four
are a trade-off with resource utilization. More parallel trees
result in a large increase of resource utilization and also might
result in a wiring congestion on chip in larger scenarios.

6.2. Logic Networks

Random logic functions with six input and one output where
generated and ABC [17] was used to convert these logic func-
tions to netlists of inverters, two-input AND gates and two-input
XOR gates. Of course such a problem would be better solved
using lookup tables rather than configurable interconnects and
basic logic gates, but this is a simple method for generating a
virtually unlimited pool of “similar” large netlists. For this test
InterSynth was configured with oversizing rules to add 10 %
plus 5 cells of each kind to compensate for the variation in the
cell usage in the generated netlists.

Test 1) For the pre-silicon phase, four random example
netlists were used to optimize the interconnect. The results
from this pre-silicon phase were then tested using 1000 other
random netlists (limited by the number of available cells) for
the post-silicon phase. This was performed 50 times. The
post-silicon run failed in only 0.05 % of these 50000 tests.

Test 2) An average number of 16.8 (stddev 0.8) MUX2 per
cell port are required to implement this testcase (with four pre-
silicon netlists) regardless of whether the cell-to-leaf-mapping
was optimized or not (i.e, mode_swap_cell_mappings was en-
able or disabled). This shows that while it is possible to use



InterSynth for large homogeneous networks like this test case,
it doesn’t have an advantage over distributing the cells regularly.

7. CONCLUSION

A tool is presented that automatically optimizes a heteroge-
neous coarse-grain reconfigurable logic architecture. In the pre-
silicon phase, the application class for the reconfigurable mod-
ule is defined and specified by several example applications.
These are used by the presented algorithm to optimize a tree
structured interconnect and the selection of the building blocks
which are able to implement all example applications. Spend-
ing additional hardware resources even allows to implement
yet-unknown applications with the resulting silicon. The tool
is used in the post-silicon phase to map the netlists of the actual
applications to the logic circuit.

The evaluation of the algorithm was performed using digi-
tal filter topologies. With only two example netlists and slight
oversizing in the pre-silicon phase, nearly all other example
netlists could be realized in the post-silicon phase. Additionally,
a large optimization potential to keep the hardware resources
limited was demonstrated.

Future development will integrate the generalization of
building blocks, e.g. an ALU as a replacement for different
simple arithmetic operations [2]. The routing algorithm for
pre- and post-silicon phase will be improved, for example to
support the routing of a single net in multiple trees. As depicted
in the bottom part (yellow background) of Tab. 1, the hardware
resources (MUX2) of the interconnect increase when more pre-
silicon netlists are used, even when all example netlists can be
routed. A consolidating step after the pre-silicon procedure will
reduce the hardware resources.

InterSynth is a generic tool for creating interconnects using
the procedure described in this paper. It is implemented in C++
and released as Open Source project at http://www.clifford.
at/intersynth/. The scripts used to run the experiments in
Sec. 6 are included.
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